LISA OFFICE SYSTEM A2 PERFORMANCE

Apple Lisa Computer Information
October 18, 1982

£ Apple Lisa Programmer's Handbook
Stanford University Libraries
Department of Special Collections

LISA agil 2001

Document# 473

""" i RO R R I R S R SRR K Bl MR RICR L K Bt R O EM AR R ERHRB R B R

x4

Apple Lisa Information

SRS

RS

CLO0HD

s

/421 /55 7; FILE,NAHE
Cr Tormanse
Dbservatioms ans Socopmendy Loy s

DISK # essm—

COMMENTS

/4 bt /762~

_@' Dages
ofaion

David T. Craig
736 Edgewater, Wichita, Kansas 67230
(316) 733-0914

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Illlll“lllllllllllllllllHIHIIIIIIIIIIIIIIIIIII!lllllllllllllllllllIIlIIlIIIlllIHIIIIHIIl“llllllllllllllllllllIlllllllllllllllllllli

e e

Page: 1o0of 6

Apple Lisa Computer Information LISA OFFICE SYSTEM A2 PERFORMANCE

October 18, 1982
A
@ aoppic

FROM: Mark Deppe DATE: 10/18/82

TO: Bruce Daniels
Frank Ludolph
Rod Perkins
Tom Malloy
Chris Moeller
Art Benjamin
Wendell Henry
Paul Williams
Wayne Rosing

CC: POS Software

RE: A2 Performance = Observations and Recommendations

For the last two weeks I have been using the 0S logging utility and running
the Logutil program to see what”s going on inside our little box. I have
noted down some observations and recommendations which I thought would be
useful to pass along. All of the tests were run with 1 megabyte of memory; a
profile, and using the A2 release, or preliminary forms of it.)

Observations

o Swapping in a code segment usually takes between .5 and 2 seconds from a
profile, and this is fairly proportional to the size of the segment. Very
large segments tend to take about 2 seconds, and very small ones about .5

seconds. This includes the time spent by the memory manager moving things
around in memory and discarding other segments.

o It requires about 41 swaps to pull a list manager document for the first
time. This results in about 48 seconds during which the list manager is
doing nothing but waiting for swaps. This also happens to be 56% of the
overall time that it takes to pull a list for the first time.

o When the contents of memory were examined at a few snapshots, I found that
25-30% of it was occupied by data segments of one form or another (stacks,
syslocs, private and shared data segments). This does not include the
portion of memory occupied by the 0S, only that portion used by the filer
and applications. The amount of memory available to the Filer and the
applications seemed to be about 600K, 160 of which was occupied by data
segments. :

o There is a tremendous amount of code necessary to run either the Filer or
an application. When left to itself, a single process will manage to
completely f£ill the available 600K. Fortunately, a lot of this is shared
code and data which can be used by other processes.

o Once a process begins to execute, it will usuélly manage to completely

displace the private code and data segments of the previous process within
a fairly short time. This means that if a process has been executing for

Page: 2 of 6

Apple Lisa Computer Information LISA OFFICE SYSTEM A2 PERFORMANCE
October 18, 1982

awhile, a’'process switch will require all of the new processes code and
data segmenis to be swapped in.

o Because of the above, process switches can be extremely expensive. The
most common switches occur between the Filer and the applications. How
expensive it is is proportional to the amount of activity which occurred
since the previous process switch. If process A has been executing a long
time and switches to B, this will take a long time because few of the data
or code segments that B needs are in memory. Om the other hand, if B had
recently executed, then the switch will be relatively fasts

o A handshake protocol is even more expensive. This involves two process
switches of the form Filer/Appliqgtion/Eiler, or
Application/Filer/Application. An example of this type of handshake occurs
after an application has opened a document and gends a DocOpened message to
the Filer. The Filer executes and responds by sending an Activate to the
application. The application then begins to execute again.

One of the worst examples of this occurs when a document is pulled for the
first time and the application must initialize itself in addition to ’
opening the document. By the time the application has the document open,
the Filer is nowhere to be seen in memory. Brinmging it back in to do the
handshake requires about 13 seconds. Then there is an additional 9 seconds
required to swap back in the application”s segments which were just thrown
out by the Filer. The total cost of this protocol is 22 seconds. The
specific example used in this case was LisaCale, but I have also seen
similar behavior using the LisaDraw, and I would assume it is also true for
most of the applications. ‘

This type of protocol completely defeats the clock algorithm of the 0S
memory manager. After the second switch back to the application, the 03
continues to throw out the application”s code segments, while leaving the
Filer“s intact. This significantly reduces the amount of memory available
to the application for two clock rotations, after which time the Filer~”s
segments are thrown out. In the meantime, however, there is much thrashing
between the application”s segments.

o The percentage of time the system spends swapping, as opposed to doing
useful work is significant and varies depending on the task. Using the
list manager as a test case, I found that when pulling a document for the
first time, it spends 44% of its time waiting for swaps during the one-time
initialization, 93% waiting for Filer segments to swap back in, and 65% of
the time waiting for swaps when actually opening the document. :

When a process must be completely swapped in to perform a relatively short
task, the swap percentage becomes the major portion of the time. In the
above example, swapping in the Filer to perform the OpenDoc/Activate
handshake required about 8.4 seconds, 7.8 of which were spent waiting for
data and code to be swapped in. This included 3 data segments, 4 private
code segments, and amounted to 93% of the time that the Filer executed.

o Some of the swapping caused by an application can be eliminated. I
experimented with the List Manager and was able to reduce the time required

Page: 3 of 6

Apple Lisa Computer Information LISA OFFICE SYSTEM A2 PERFORMANCE
October 18, 1982

to pull a'%ocumant for the first time from 104 seconds to 84 seconds. The
total number of swaps was reduced from 58 to 41. This is a 197 reduction
in time and a 29% reduction in swaps. This was achieved by careful study
of the swap logs and by using certain techniques, the more successful of
which are described later. Not all of these techniques may be practical
for everyone, but some of them are guaranteed to improve the performance.

somewhat.

Recommendations
It became obvious from this exercige that no single change to the system is
going to increase the performance by a large amount. There are a number of
possible changes which when taken together could make a difference. However,
some of these may not be practical in the short term due to the level of
effort required. It would probably be to our advantage for the Performance
" committee to determine which of these techniques are feasible and in what
time frame.

1) Reduce the number of process switches which are required. The tremendous
success of the “picture” technique was due to the fact that it eliminated.
the need for a great many process switches. Now the only omes left which
are troublesome are the Filer/Application switches. A

The most obvious way to do this would be to change the Filer/Application
protocols to reduce the number of switches. For example, when a document
1s pulled, the filer knows that the document should be activated as soon
as it is opened. If the Open/Opened/Activate protocol could be compressed
into a single message from the Filer, two process switches could be
eliminated. Similar techniques could be done with other such protocols.
Depending on the operation, I believe that between 5 to 20 seconds could
be saved for various scenarios. This advantage should be amplified on a
system with smaller memory or swapping to twiggies.

Since it is too late to completely revamp the protocols for first release,
one strategy might be to phase in new streamlined protocols to the
existing set, starting with the ones which would improve the performance
the most. Applications could then begin to use the more efficient
protocols as time permitted.

It is also possible to reduce the overhead of performing the existing
protocols if the handshake is done differently, although the performance
benefit 1is not nearly as great. For example, when the List Manager gets a
request to open a document, it immediately returns the “DocOpened”
response. This is an outright lie, but because the Filer is still in
memory, the process switch takes less time. This is due to the fact that
the overhead of doing a switch from process A to B is proportional to the
amount of activity which occurred between the last switch from B to A.
Switching back to the List Manager to activate the folder also takes very
little time, for the same reason. The List Manager then opens the '
document, and the extra code needed to accomplish this can displace the
Filer without any penalty. A similar technique can be done when closing a
document. By comparing the list manager logs with other application logsy

Page: 4 of 6

Apple Lisa Computer Information LISA OFFICE SYSTEM A2 PERFORMANCE
October 18, 1982

it appeared as though the “quick” Open and Close protocols executed about
8 to 14 seconds faster than the extended protocols.

This is not nearly as good as eliminating the switch entirely, but it
reduces the overhead without changing the actual interface. Thies option
should be investigated further to determine whether othgr such protocols
may be similarly speeded up, and to verify that thete are no hidden
inherent problems. By far the preferable solution, however, is to
implement new protocols which minimize the number of process switches.

2) We should optimize the Filer as much as possible. This process is at the
.center of most switches, so it makes sense to spend a great deal of effort
here. Specifically, the amount of code which is necessary to execute a
protocol should be reduced to a ‘bare minimum. Currently 4 private
segments, in addition to a stack, sysloc, and private heap, must be
swapped in to perform the DocOpened/Activate protocol. Any reduction in
this overhead would benefit the entire system.

3) Everyone needs to carefully segment their code to be as efficient as
possible with respect to swapping. This is especially important for hot
shared code.

4) Make the memory manager more intelligent. Many of the possible techniques
have been mentioned before. For example, adding another memory state to a
segment would help. Weighting segments differently depending on whether
they were private, shared, code, or data might work. Favoring the
segments of the currently active process I feel would be a big help, if it
could be done. . :

5) Reduce the amount of memory occupied by data segments. One good way to do
this is to occasionally shrink heapzones down and readjust the the data
segment memory size. Furthermore, data segments should be unbound if they
are not used for any length of time during the executlon of a process.

Stack sizes could potenﬁially be reduced by a small amount by going
through the code and cutting out the historical dead weight of unused
variables.

6) Reduce the number of data segments in the system. Data segments used by

an application should be combined into one if possible. It would also
help if the stack and sysloc data segments of a process could be combined

into one.

7) Reduce the amount of code in the system. By this I mean, rewrite certain
portions of very hot shared code to be more compact. I am not suggesting
that we all recode in assembly, although Bill Atkinson has certainly used
this approach effectively. However, it might be useful to identify the
hottest shared code in the system and trim it down where possible.

In addition, all code probably contains historical dead weight which could
be trimmed off after a little examination.

8) Applications should be optimized as much as possible to minimize the
" amount of swapping which is required. I have found that the logging

Page: 5 of 6

Apple Lisa Computer Information LISA OFFICE SYSTEM A2 PERFORMANCE
October 18, 1982

facility is excellent for this purpose. First of &ll, the swap log shouléd
be examined to determine what segments are being brought in for various
operations such as initialization, opening a document, closing & document,
activation, deactivation, and so on. Using the log utility it is fairly
easy to spot segments being swapped in which don”t quitg make sense.

For example, “cold” segments which are swapped in during routinme
operations are a good indication that the segmentation is not quite right,
and a procedure is being called which should really be in z hot segment.
It may also indicate a call to a procedure which is not absolutely
-necessary. The converse is also true. Sometimes a hot segment is brought
in when the application is doing cold functions such as initialization, an
indication that a cold procedure resides in the hot segment.

In other cases, segments may be swapped in which need not be swapped in at
all. Some initialization which is currently done every time a document is
opened can be defered until the relevant operation is requested. The
printer arbitration is one such example. Some applications need not
execute this code until printing is actually requested. It saves swapping
in a fairly large (and therefore expensive) code segment while opening a
document.

During initialization, order canm also be important. Sometimes segments
are swapped in twice because the two references to it are separated by a
large amount of other activity. By resequencing the two operations to
occur together, one of the swaps can be eliminated. ' -

Another trick during initialization is to initialize shared code first,
and application specific code last in the sequence. When an application
first begins to execute, there is a greater amount of shared code in
memory then later in the initialization sequence, when some of the shared
code has been replaced by the application”s private code and data
segments. Initializing code which is shared first means that there 1s a
greater probability that the code segments needed are already in memorys
Waiting until later often results in the segments being discarded, which
then have to be swapped back in, potentially displacing valuable resident
code. OpenScrap is an example of such an operation.

1f possible, applications should defer creating data segments during
initialization until the very last possible moment. This results in
greater code swapping space during the initialization. If this cannot be
done, it is sometimes possible to defer expanding the data segment until
later, which achieves the same thing.

Shrinking the memory size of data segments at deactivation time, and any
other appropriate time also increases the amount of memory for swapping.
In addition, it will take less time to swap out the data segment when the
process is not active, and take less time to swap it back in when it is

reactivated.

All initialization which may be done only once should be done when the
process is created, rather than each time a document is opened.

0 .ﬂ\p, Ehol/"

5

Page: 6 of 6

