& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Tesler « Feb 1982)

Date: February 26, 1982

To: Lisa Software, NPR, and Technical Support

cc: Wayne Rosing, Pat Marriott, Andy Hertzfeld = R

From: Larry Tesler ‘267’ ~T\\\\\~ ‘
Dre %/zw/

Subject: Heap Usage Standards and Facilities /73 bor o

e
fMac K Tam

egarric

This memo discusses the problem of jheap fragmentation from a theoretical
and practical standpoint. It also proposes more judicious use of
non-relocatable blocks in Lisa software. Finally, it summarizes recent
changes to the interface of the standard storage allocator (Hz and unit
Storage). Somewhat more complete documentation of UnitHz appears in a
companion memo. .

I have based these proposals and plans on conversations with many, but not
all, members of the Applications Group, plus Bud Tribble, Bruce Daniels,

and Rich Page. * . .

FRAGMENTATION

Lest anyone forgets, fragmentation of the heap is even more disastrous in
Lisa than in most computer systems. :

True, when a heap fragments, its data segment usually can be expanded, but
a heap that is both fragmented and expanded leads to serious performance
degradation. :

The reason that fragmentation is so undesirable on Lisa is that the user
is likely to keep a process alive-—and very actively allocating and
freeing storage—for eight or more hours at a stretch. It would be
unfriendly to announce that memory is exhausted, or to slow to a snail’s
pace, just because most of the heap is occupied by free blocks not quite
large enough to fulfill the most recent allocation request.

Fragmentation is an unavoidable problem when non-relocatable blocks of
varying sizes are allocated and deallocated in a heap. Theoretical.
studies have proven that, regardless of allocation strategy, a heap will

always fragment. The time it takes is a function of the variance in block
sizes. Clever strategies can only defer the unavoidable.

¥ DTC #2001 ber of 161 Motk Ae@dofm—("('em,w,o{e
05 Ul)varv)'.
el L% Mo’l;‘('or drv envir-

| Source: David T Craig Page 0001 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Tesler « Feb 1982)

Heap Usage February 26, 1982 page 2

The theoretical studies have simply validated common experience. Some
anecdotes:

The Burroughs 5000, where buddy-system allocation was a hallmark of
the ahead-of-its-time Master Control Program, fragmented storage every
few hours and had to be rebooted; not good for a m:ltiprogramming
number—cruncher. Burroughs later adopted relocatable®storage.

Smalltalk-72 used to die after a few hours, with thousands of words of
free space but no block large enough for a disk buffer. Starting with
Smalltalk-76, we adopted relocatable storage.

The first implementation of Bravo (forerunner to our Word Processor)
would run only a few minutes be¥ore its heap became a wasteland of
undersized free blocks. The first version they actually released used
relocatable storage. At first, they used a complicated system to
avold double-indirection. After a few years of painful experience
with it, Tom switched to an allocator of the same flavor as Hz.

Even in our own group, the folly of using non-relocatable blocks in the
heap~has been demonstrated by the two applications that have received the
most extensive use so far: the Graphics Editor and the Mouse Editor.

They both die a premature death with memory looking something like this . .
(artificial example): '

10 word used block

100 d f block
00 woed free block gk ITC Y

N = ‘sqbyaw
110 word free block | “@,m{)’/\f‘/ {J‘»{"y - L]

10 word used block
o e oc = L“\L‘)n‘&

120 word free block “u

10 word used block L r('

130 word free block ' Mouw’ ‘EO‘ ¥ W a[JO

10 word used block : o hamt

100 word free block C‘klﬂo ig\qs . le(sl\c}(‘i
10 word used block wied o ‘H“" Lisa

110 word free block \o d d-_t”_ lel("-'l"' I

10 word used block Mmouse- aled ed! fed. \
120 word free block L&(Bruce Qaw'@b N .4 o)
10 word used block e

130 word free block

and then a request for a 140-word block comes along. There are 920 free
words in a 1000-word heap, but no room for a 140-word block!

OVERHEAD

The effective overhead for each of the eight 10-word blocks in the above
heap 1s 920/8 or 115 words. So much for the myth that relocatable blocks
have a greater overhead than non-relocatable blocks.

¥ DTC f{uot Workstl o e Yerx Pnﬁl:ﬂi

TM = ’B“ a‘(“]" rocessdy -{‘L‘K WIML o

LicaWrite word process or.

-

| Source: David T Craig Page 0002 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Tesler « Feb 1982)

Heap Usaée February 26, 1982 v page 3

Relocatable blocks do have overhead. . In addition to the two-word header
and the two-word master pointer, every double-indirect reference requires
at least one extra instruction, and the heap has a lot of unused master
pointers. But from a system performance standpoint, this price is worth
it to avoid fragmentationm. '

DANGERS OF DOUBLE-INDIRECTION

It is true that double-indirection has its risks. It is always safe to
write:

>

with h** do ‘ .o
begin ’
x 1= p~.f;
'o-;

end;

because a procedure call between the dereference and the access might
cause a heap compaction.

Some people get around this by having two heaps: one for objects that are
infrequently allocated, but accessed by many statements in their program,
and another for objects that are frequently allocated, but accessed by few
statements in their program. They then can use "with" for the first type
even when calling procedures that may allocate the second type. For
example, LisaGraf allocates and deallocates regions and buffers like
crazy, but your program never accesses them, so you can give LisaGraf a
separate heap and call its procedures almost with abandou.

An apparent disadvantage of this trick is that unused space in one heap 1is
not available to satisfy requests in the other heap. Still, it might work
out well if both heaps contain nothing but relocatable blocks, because
each data segment can then grow AND SHRINK dynamically.

Another disadvantage is that you can map only a few data segments at a
time into your address space. If you have one for LisaGraf, one for you,
one shared segment for the Window Manager and Scrap, and three for the
Data Base Primitives, then that leaves little for whatever else comes up.
We had better watch our data segment usage carefully.

L Source:

David T Craig Page 0003 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Tesler « Feb 1982)

Heap Usage February 26, 1982 ‘ page 4

OTHER WAYS TO AVOID FRAGMENTATION

The Data Base Primitives use non-relocatable blocks to reduce overhead,
and a special-purpose technique to recover from the inevitable ‘
fragmentation. The heap is cleared out and regenerated from redundant
information stored elsewhere. Most programs do not have the information
to do this.

Sometimes, a program can do its own relocation without using the standard
allocator, because it knows where every pointer is. But this 1s rarely
feasible, because one often exhausts memory when some uplevel procedure
has a local variable pointing at a heap block, and you’ll never get that
pointer adjusted. . :

Sometimes, an application allocates and deallocates objects that are all

the same size. In that case, Lt s possible that an array or a dedicated
heap can be an efficient and unfragmentable place to store the objects.

STANDARDS

1 propose that everyone find their uses of non-relocatable blocks and
change over to relocatable blocks instead, unless:

(1) The blocks are in a heap that containms only non-relocatable blocks,
preferably all of the same size, or,

(2) You have a proven recovery technique like the data base
primitives, or,

(3) You can prove that fragmentation won’t be a problem (the heap only
exists for a few minutes and does a known job, or whatever).

You are welcome to consult me about problems that come up in this (or any)
effort.

~

| Source: David T Craig Page 0004 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Tesler « Feb 1982)

Heap Usage February 26, 1982 page 5

FACILITIES ‘k

There have been at/least four relocatable allocators floating around.

In Monitor 7, Tom”released a new version that consolidates what I consider
the most important features. It is segmented so that procedures used only
by the Word Processor are not swapped in along with the kernel procedures.
It has under 2K bytes of resident code. . .

Briefly, the new allocator has the following advantages:
(1) A more uniform interface than the old Hz, more like Unit Storage;

© (2) Less error—-prone than unit Storage, because hz is an explicit,
rather than an implicit, agpgument.

(3) A function to return the heap that a handle references:
hz := HzFromfH(h)

See the accompanying memo, "The New Standard Storage Manager Interface",
for details.

All former Hz and Storage procedures are still supported. However, I
urge people to change to the new ones when they have a chance so that we
can reduce the interfaces eventually, and so that software maintenance '
will be easier. :

;ﬁ*.Bill is planning to make the following additiom to allow a region to be
allocated in an explicitly-specified heap:

RgnAllocate(hz: THz): RgnHandle
The procedure:
NewRgn: RgnHandle

will still be available, and will use "theHeap". LisaGraf will also use
"theHeap" for temporary allocation. Some day, we’ll probably rename it

"grafHeap".

In a forthcoming release of UnitHz, it will not be possible to mix
relocatable and non-relocatable blocks in the same heap. I strongly
suggest that everyome who still has non-relocatable blocks put them
in a different heap before that release so that conversion to the new

UnitHz will be simple. :
¥ Tom= Tom Mﬂ”"‘] . L"‘“w"%"/ Lisa L’_"’ merar]
A MG\(\&?W ‘JN?I‘W'
Jek Pl = ol A‘H(lhs')v\v_ Lisa QuickDraw ﬁMFAI'CJ],’Lmv']
‘)eranw.

i { \
gt 'ﬁ? le Licats [¥1 devele pent ehviimmet
| &‘%’Z Z,ﬁuao ::574-f::. /f/({ (Recls f’“; ef mthis) .

| Source: David T Craig Page 0005 of 0006 |

& Apple Lisa Computer Information ¢ Lisa Memory Management Memo (Tesler « Feb 1982)

Heap Usage February 26, 1982 page 6

NONRELOCATAB}E GRAFPORTS AND EVENTS

At the moment, grafPorts and eventRecords are nonrelocatable and have
been causing fragmentation of heaps. Bruce, Bill, and I have analyzed
many alternatives and have decided upon the following solution at least
for First Release: . .

Event records in the Event Manager will become relocatable.
This will affect only the Event Manager and the Alert Manager.

Grafports will not become relocatable. The code changes both in

° LisaGraf and in applications would hurt schedule and code size
too much for First Release. Instead, the Window Manager will
limit the number of windows to 20 (plus the dialog box and alert
box), and store their nonrelocatable grafPorts in an array that
cannot move or grow. There cannot be more than 20 of them in the
Tray anyway. (Second release there are several different ways to
1ift this restriction if necessary.) Applications can still have
their own non-window grafPorts in their own global variables as
they do now, but they should avoid allocating and deallocating them
dynamically on the heap.

FUTURE ENHANCEMENTS
The following allocator enhancements are expected before first release:

(1) ChangeSizeH will grow/shrink in place ianstead of copying, when
possible.

(2) A CheckHeap procedure will scan the data structure and report
clobbered free-lists and headers. This can be called during
debugging to help isolate code doing wild stores.

(3) A testing tool will be provided to help catch invalid
dereferenced handles.

(4) Relocatable and non-relocatable blocks will be forbidden 1in
the same heap.

These changes would not affect the standard interface (except to add
CheckHeap).

After first release (or sooner, if forced by perfofmance problems), we §<

might adapt Bud Tribble’s assembly-language allocator to increase
speed. We are not adopting it now because it 1is slightly incompatible.

e ye H[wol | ye Bud Tri bl
?)yu(,e, Pruce Vaw'dls ‘ Mee 0s f,,?wuﬂmef
bl = Pill Arkkinson

eslor '
. I Lo T o The EMLO

| Source: David T Craig Page 0006 of 0006
J

Ty W

